18.06 Professor Edelman Quiz 1 October 3, 2012

Your PRINTED name is: \quad| Grading |
| :--- |
| 1 |
| 2 |
| 3 |
| 3 |

Please circle your recitation:

1	T 9	$2-132$	Andrey Grinshpun	$2-349$	$3-7578$	agrinshp
2	T 10	$2-132$	Rosalie Belanger-Rioux	$2-331$	$3-5029$	robr
3	T 10	$2-146$	Andrey Grinshpun	$2-349$	$3-7578$	agrinshp
4	T 11	$2-132$	Rosalie Belanger-Rioux	$2-331$	$3-5029$	robr
5	T 12	$2-132$	Geoffroy Horel	$2-490$	$3-4094$	ghorel
6	T 1	$2-132$	Tiankai Liu	$2-491$	$3-4091$	tiankai
7	T 2	$2-132$	Tiankai Liu	$2-491$	$3-4091$	tiankai

1 (22 pts.)
Let $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 3 & 4\end{array}\right)$ and $M=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 3 & 4\end{array}\right)$.
a) (5 pts.) Which are the pivot columns and which are the free columns of A ? Why?.
b) (5 pts.) Which are the pivot columns and which are the free columns of M ? Why?
c) (6 pts.) For which $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ are there solutions to $A x=b$? For those b, write down the complete solution.
d) (6 pts.) For which $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ are there solutions to $M x=b$? For those b, write down the complete solution.

2 (24 pts.)

Consider the vector space of polynomials of the form $p(x)=a x^{3}+b x^{2}+c x+d$, where a, b, c, and d can be any real numbers. Are the following subspaces? Explain briefly in a way that we are sure you understand subspaces.
a) (6 pts.) Those $p(x)$ for which $p(1)=0$.
b) (6 pts.) Those $p(x)$ for which $p(0)=1$.
c) (6 pts.) Those $p(x)$ for which $a+b=c+d$.
d) (6 pts .) Those $p(x)$ for which $a^{2}+b^{2}=c^{2}+d^{2}$.

This page intentionally blank.

3 (27 pts.)

a) (9 pts.) Find an LU decomposition of the matrix $A=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right)$, where we assume $a \neq 0$.

L is unit lower triangular (1's on the diagonal) and U is upper triangular.
b) (9 pts.) Find a "PU" decomposition of the matrix $A=\left(\begin{array}{ccc}0 & a & b \\ c & d & e \\ 0 & 0 & f\end{array}\right)$, where P is a permutation matrix, and U is upper triangular.
c) (9 pts.) Find an "X'X" decomposition of the matrix $A=\left(\begin{array}{cc}a^{2}+b^{2}+c^{2} & a d+b e+c f \\ a d+b e+c f & d^{2}+e^{2}+f^{2}\end{array}\right)$.

The matrix X that you need to find satisfies $A=X^{T} X$, and need not be a square matrix.

4 (27 pts.)

Either construct a matrix A or argue that it is impossible, where the nullspace of A is exactly the multiples of $(1,1,1,1)$ and the dimensions (number of rows, number of columns) of A are
a) (9 pts.) 2×4
b) (9 pts .) 3×4
c) (9 pts.) 4×4

This page intentionally blank.

